ADVANTAGES OF PTFE

Permeation Resistance
A nonpolar, thermally stable polymer (i.e. PTFE) is not swollen by hydrocarbons... hydrocarbon materials do not plasticize fluorocarbons (i.e. PTFE), therefore they are not effected by hydrocarbon presence.

Electrostatic Discharge (ESD)
The PTFE innercore has a precisely controlled amount of carbon black added to the inner liner, making it electrically conductive. The transfer of certain fluids through a hose, such as fuels, can lead to the build up of static charges along the inner surface of the hose. To prevent the condition known as electrostatic discharge, or ESD, innercore of PTFE can be made electrically conductive.

Environmental Stress Crack Resistance
The high molecular weight of PTFE due to long polymer chains increases its load bearing capability, meaning increased resistance to stress cracking from environmental factors.

Temperature Resistance
Hoses of PTFE can operate at transient temperatures from -65°F to +450°F (-54°C to +232°C).

Low Friction
Low pressure drop due to the non-stick properties of PTFE.

Flexible
PTFE withstands continuous flexing and vibration without failure from flex fatigue.

Chemically Inert
PTFE will not break down or deteriorate in service with automotive fluids.

Non-Aging
The shelf life of PTFE is unlimited because its properties do not change with age or exposure to weather.

PTFE Fluorocarbon as a Hose Material
Polytetrafluoroethylene is an engineered fluoropolymer commonly known by PTFE. Outstanding resistance to chemicals is one of its primary attributes.

Titeflex Corporation has over 45 years of experience processing PTFE to maximize the resistance to permeation and stress cracking of the extruded PTFE innercore.

Braiding the PTFE tube with Stainless Steel wire reinforcement adds strength, flexibility, and corrosion resistance. Nonmetallic reinforcement is also available.

Originally introduced for demanding Aerospace fluid handling applications, Titeflex Hose of PTFE has been solving critical Automotive fluid handling applications for 25 years.

Innercore
PTFE fluorocarbon meets the requirements of: ASTM D4895 Type 1, Grade 4, Class B and ASTM D1457 Type III Grade 2, Class B.

Typical wall thickness range from 0.023” to 0.030” (0.58mm to 0.76mm)

Both conductive and non-conductive innercore are available.

Reinforcement
Braid wire meets the requirements of AISI Type 304 Stainless Steel and AISI Type 316 Stainless Steel.
R135-SERIES HOSE OF PTFE

R135 hose has a nominal 0.023” (0.58mm) wall of conductive PTFE innercore and a reduced stainless steel wire braid reinforcement. This combination of reduced PTFE wall and wire coverage creates a cost-effective hose with the permeation resistance of PTFE and the added strength of wire reinforcement. Applications: Fuel, Turbo Oil Drain, Engine Coolant, Hydraulics.

R122-SERIES HOSE OF PTFE

R122 hose has a nominal 0.030” (0.76mm) wall of conductive PTFE innercore and a stainless steel wire braid reinforcement. Applications: Brake, Traction Control, Stability Control, Fuel, Hydraulic Clutch, Transmission Oil Cooler.

R149-SERIES HOSE OF PTFE

R149 hose has the same construction as R122 hose, but it is sized to accommodate the larger outer diameter of nylon coated tube. Applications: Brake, Traction Control, Stability Control, Fuel, Hydraulic Clutch, Transmission Oil Cooler.
ETPV SLEEVING

ETPV thermoplastic elastomer can be applied as an integral sleeve, providing complete corrosion protection, abrasion resistance, and a labeling surface for most automotive applications. ETPV sleeving can be “crimped over” reducing skiving and improving sound attenuation. The ETPV sleeving can also aid in preforming of the hose. Additional thermoplastic sleeves, such as Sarlink® and Hytrel® are also available for abrasion protection and labeling of the hose.

Hytrel® is a registered trademark of DuPont.
Sarlink® is a registered trademark of DSM.